Homework 4, due 10/1

Only your four best solutions will count towards your grade.

1. Let $\Omega \subset \mathbf{C}$ be connected, and $f_{k}, f: \Omega \rightarrow \mathbf{C}$ holomorphic functions, such that $f_{k} \rightarrow f$ locally uniformly on Ω. Show that if each f_{k} is injective, then f is either injective, or constant.
2. Let $\Omega \subset \mathbf{C}$ be connected, and $f: \Omega \rightarrow \mathbf{C}$ a non-constant holomorphic function. Let $U \Subset \Omega$ have compact closure in Ω, such that $|f|$ is constant on ∂U. Show that f must have a zero in U.
3. Prove that if $\Omega \subset \mathbf{C}$ is open and $f: \Omega \rightarrow \mathbf{C}$ is holomorphic, then $f^{-1}(\mathbf{R})$ cannot be a non-empty compact subset of Ω.
4. Let $\omega_{1}, \omega_{2} \in \mathbf{C}$ be linearly independent over \mathbf{R}, and let

$$
L=\left\{n_{1} \omega_{1}+n_{2} \omega_{2}: n_{1}, n_{2} \in \mathbf{Z}\right\}
$$

Let f be a meromorphic function on \mathbf{C} that is doubly periodic. I.e. $f(z+$ $l)=f(z)$ for all $l \in L$ and $z \in \mathbf{C}$ where f is holomorphic.
For $z_{0} \in \mathbf{C}$ denote by $P\left(z_{0}\right)$ the parallelogram

$$
P\left(z_{0}\right)=\left\{z_{0}+t_{1} \omega_{1}+t_{2} \omega_{2}: t_{1}, t_{2} \in[0,1]\right\}
$$

If $\partial P\left(z_{0}\right)$ contains no zeros or poles of f, prove that there are the same number of zeros as there are poles in $P\left(z_{0}\right)$, counted with multiplicity.
5. In the same setting as the previous problem, suppose that $\partial P\left(z_{0}\right)$ contains no zeros or poles of f. Let z_{1}, \ldots, z_{n} be the zeros in $P\left(z_{0}\right)$, and w_{1}, \ldots, w_{n} be the poles in $P\left(z_{0}\right)$, repeated according to multiplicities. Considering the integral of $z f^{\prime}(z) / f(z)$ prove that

$$
\sum_{k=1}^{n}\left(z_{k}-w_{k}\right) \in L
$$

6. Suppose that f is holomorphic on an open set containing the closed disk $\bar{D}=\overline{D(0,1)}$. In this problem we give a proof, using the maximum principle, of Cauchy's inequality for f^{\prime} in the form that there exists a constant $C>0$, independent of f, such that

$$
\begin{equation*}
\left|f^{\prime}(0)\right| \leq C \sup \{|f(z)|:|z|=1\} \tag{1}
\end{equation*}
$$

(a) Show that given a cutoff function $\eta: \bar{D} \rightarrow \mathbf{R}$, vanishing on the boundary of the disk (for instance we can take $\eta(z)=1-|z|^{2}$), we have

$$
\begin{equation*}
\Delta\left(\eta^{2}\left|f^{\prime}\right|^{2}+D|f|^{2}\right) \geq 0 \tag{2}
\end{equation*}
$$

where $\Delta u=\partial^{2} u / \partial x^{2}+\partial^{2} u / \partial y^{2}$ is the Laplacian. Here D is a constant depending on η.
(b) Using the inequality (1) above, show that the function $\eta^{2}\left|f^{\prime}\right|^{2}+D|f|^{2}$ achieves its maximum at the boundary of D, and hence deduce the estimate (2).

